Circadian pathways as a mediator between alcohol and liver disease

Shannon M. Bailey
Department of Pathology
University of Alabama at Birmingham

Circadian Rhythm in GI Health & Disease
Rush University Medical Center
May 5-6, 2016 • Chicago, IL
Talk Highlights

• Alcohol-induced fatty liver disease

• Energy programs - Glycogen, lipid, and mitochondrial metabolism in the liver

• Dynamic nature of liver metabolism & molecular circadian clock

• Alcohol disrupts the liver circadian clock

• Alcohol disrupts diurnal rhythms in energy metabolism processes – Lipid and Glycogen

• Impact genetic disruption of the clock has on metabolism
 • Hepatocyte-specific BMAL1 knockout mouse model
Alcohol use & Alcoholic liver disease

- Half of Americans drink alcohol

- 15 million heavy drinkers and 52 million binge drinkers

- Most prevalent cause of liver-related illness and death

- 2 million alcohol-related liver disease

- 15,000 - 20,000 deaths/year

- Increasing incidence of liver cancer

- No FDA approved therapies
Alcoholic liver disease – complex spectrum of pathologies

Early disease
- **Steatosis:** Fat accumulation, Triglycerides

Molecular Mechanisms of ALD:
- Lipid and glycogen alterations
- Oxidative stress | Redox signaling
- Mitochondrial damage | Bioenergetic stress
- Inflammation | Fibrogenesis
- Circadian clocks

Steatohepatitis: Fat accumulation, Inflammation, Cell death

Late disease
- **Fibrosis/Cirrhosis:** Excess ECM - Collagen

- Molecular Mechanisms of ALD:
 - Lipid and glycogen alterations
 - Oxidative stress | Redox signaling
 - Mitochondrial damage | Bioenergetic stress
 - Inflammation | Fibrogenesis
 - Circadian clocks
Alcohol disrupts energy metabolism pathways

Lipid - Triglyceride

Carbohydrate - Glycogen

Mitochondria - Bioenergetics

Lipid and CHO Metabolism:
- Increased fat
- Decreased glycogen

Bioenergetics:
- Decreased respiration and ATP
- mtDNA damage | Altered proteome

- Endpoints measured at one time point – ‘Snapshot’ of metabolism
- Liver metabolism is **dynamic** and changes during the day
- Liver is a **different organ** at **different times of the day**
Time-of-day dependent changes in metabolism

Extrinsic and Intrinsic Factors

Many diseases are associated with a ‘broken’ clock

Desynchrony of Rhythms:
Disrupted phase relationships

“Mismatch” in metabolism = Disease
Susceptible population - Shift workers

What about alcohol use disorders and pathologies?

- Heart disease
- Dyslipidemia
- Hypertension
- Obesity
- Diabetes
- Insulin resistance
- Inflammation
- Cancer
Disruption in circadian rhythms and alcoholism

- Clock gene polymorphisms in alcohol use disorders and alcohol consumption. Kovanen et al (2010), *Alcohol Alcohol*

- Increased alcohol consumption in shift work and long working hours. Schulter et al (2012), *Int J Nurs Stud*
 Virtanen et al (2015), *BMJ*

- Reduced expression of circadian clock genes in male alcoholic patients. Huang et al (2010), *Alcohol Clin Exp Res*

Goal: Demonstrate the importance of disrupted clocks and metabolic rhythms in alcoholic liver disease

- Does alcohol consumption disrupt the liver molecular clock?

- What effect does chronic alcohol have on diurnal rhythms in energy metabolism?
 - Lipid, glycogen, and mitochondrial metabolism

- Are these processes regulated by the liver clock?
 - Hepatocyte-specific BMAL1 Knockout (HBK) Mouse

- What impact does a disrupted clock have on alcohol-related changes in metabolism?
Male mice: C57BL/6J mice
Hepatocyte specific BMAL1 KO
Control littermates

Feeding Protocol – 5 wk
Collect Tissues: 4 hr for 24 hr

Diurnal oscillations
(12 : 12 hr LD cycle)

Control Diet

Alcohol Diet

3% or 4% ethanol (w/v)
22% or 29% daily calories
Iso-caloric pair-fed controls
Diets = 1 kcal/mL

Lights on

Lights off

Six separate groups of mice
ZT 3, 7, 11, 15, 19, and 23
Chronic alcohol alters clock gene rhythms in liver

BMAL1 : CLOCK

<table>
<thead>
<tr>
<th>Gene</th>
<th>BMAL1</th>
<th>CLOCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-box</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Per1-3

Cry1-2

Rev-erba

Dbp

Alcohol disrupts:
Mesor & amplitude of all clock genes
Acrophase of Cry1, Per2, Rev-erba

From: Filiano et al. PLoS One 2013
Alcohol and the Molecular Clock

• Chronic alcohol does not alter the central SCN clock – no effect on clock gene rhythms

• Chronic alcohol influences the liver clock - alters mean expression, amplitude, and phase (timing) of clock genes

• Chronic alcohol advances the liver clock
 • SCN and Liver explants from Per2::Luc mice fed control and alcohol diets
 • Per2 peaks earlier (~1.5 hr) in liver of alcohol-fed mice
 • No effect on SCN Per2 rhythms

• Chronic alcohol consumption desynchronizes the liver clock from the central clock in the SCN

• Circadian desynchrony may contribute to alcoholic liver injury
Chronic alcohol increases lipid and depletes glycogen in liver

Our model: Lieber-DeCarli mouse model of ALD
Steatosis w/ mild inflammation
Earliest stage of ALD

‘Snapshot’ of metabolism – Early morning, ZT 3-4
Inactive/sleep phase
Alcohol disrupts the diurnal rhythm in liver triglyceride.

Diet, p<0.001
Time, p=0.011
D X T, p<0.001

n = 4-6 mice/time-point/group
Summary – Fatty acid trafficking genes in liver

Many, many more targets...

Unpublished data

From: DG Mashek, Adv Nutr 2013, 4
Glycogen is the storage form of glucose in mammalian cells. Stored predominantly in muscle and liver, liver glycogen serves two major functions: maintenance of blood glucose level and fuel reserve for ATP synthesis.
Diurnal rhythms in glucose and glycogen metabolism genes

From: Udoh et al, AJP G&L, 2015
Alcohol disrupts the diurnal rhythm in liver glycogen

From: Udoh et al, AJP G&L, 2015

n = 4-6 mice/time-point/group
Alcohol disrupts diurnal rhythm in liver glycogen

Glycogen particle – Dynamic organelle – 40-50 proteins

- Glycogen-targeted phosphatase – Protein Phosphatase 1 – PP1
- GP and GS activities regulated by (de)phosphorylation
 - pGP – active & pGS – inactive
 - GP – inactive & GS – active
- Glycogen targeting proteins – Seven GTPs
 - Scaffold proteins - target PP1 to glycogen particle

From: Roach et al., Biochem J, 2012

Unpublished data
Alcohol depletes liver glycogen

Glycogen metabolism genes exhibit diurnal rhythms

Rhythms are disrupted by chronic alcohol - ↓ Glycogen
What effect does genetic disruption of the clock have on glycogen metabolism?

Hepatocyte-specific BMAL1 Knockout Mouse Model – HBK mouse

Chow-fed mice – 12 wks of age, male

Liver gene expression – Clock-controlled genes

BMAL1 Protein in Liver:

- WT
- HBK
- WT
- HBK
- WT
- HBK

n = 3-4 mice/time-point/group
Alcohol and clock-mediated change in hepatic glycogen

Unpublished data

n = 4-7 mice/time-point/group
Clock dependence of glycogen metabolism genes in liver

3 Factor ANOVA Results – Alcohol Feeding Study
H-BMAL1 KO and control littermates – 5 weeks

Unpublished data
Summary – Alcohol disrupts energy metabolism

Alcohol Consumption

Time of day

DeSynchrony = Disease

Triglyceride Accumulation
Glycogen Depletion
Fatty Liver Disease
Acknowledgements and Big Thanks!

Lab members
Telisha Swain
Jennifer Valcin
Marisol Gomez
Umme Lena
Rachel Finley
Ashley Filiano
Uduak Udoh
Kelly Andringa

Collaborators on Clock Project
Karen Gamble
Martin Young

Collaborators at UAB – Mito Group
Scott Ballinger
Corinne Griguer
Victor Darley-Usmar
Doug Moellering
Gloria Benavides
Claudia Oliva
Maria De Luca
Jianhua Zhang

Funding:

[NIH National Institute on Alcohol Abuse and Alcoholism](www.uab.edu/medicine/pathology)

[THE UNIVERSITY OF ALABAMA AT BIRMINGHAM](www.uab.edu/medicine/pathology)